Time-Resolved Dissociation Dynamics of Iodomethane Resulting from Rydberg and Valence Excitation

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagwort:
  • Absorption,Dissociation,Ionization,Ions,Probes
Beschreibung:
  • Rydberg excitations in the vacuum ultraviolet spectral range may open up molecular photoreaction pathways not accessible from lower-lying valence states. Here, single-shot UV/VUV pump–probe spectroscopy was used to study the photodissociation dynamics of iodomethane after 268 nm excitation in the A-band and excitation of the 6p (2E3/2) Rydberg state at 161 nm. By combining weak-field VUV single-photon ionization with sub-10 fs temporal resolution and the superior statistical accuracy of the single-shot technique, sub-30 fs wave packet dynamics upon excitation in the A-band by a UV pump pulse were disclosed. Population transfer from the Rydberg state to the 2 1A1 valence state leading to 100 fs dissociation dynamics was observed by utilizing the same methodology in a VUV-pump/UV-probe scheme.
  • Rydberg excitations in the vacuum ultraviolet spectral range may open up molecular photoreaction pathways not accessible from lower-lying valence states. Here, single-shot UV/VUV pump–probe spectroscopy was used to study the photodissociation dynamics of iodomethane after 268 nm excitation in the A-band and excitation of the 6p (2E3/2) Rydberg state at 161 nm. By combining weak-field VUV single-photon ionization with sub-10 fs temporal resolution and the superior statistical accuracy of the single-shot technique, sub-30 fs wave packet dynamics upon excitation in the A-band by a UV pump pulse were disclosed. Population transfer from the Rydberg state to the 2 1A1 valence state leading to 100 fs dissociation dynamics was observed by utilizing the same methodology in a VUV-pump/UV-probe scheme.
Lizenz:
  • info:eu-repo/semantics/closedAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/1b9b4a9c-c1c3-43f7-9ba2-aac789c4abd7