Counterion Effect in Cobaltate-Catalyzed Alkene Hydrogenation

Link:
Autor/in:
Erscheinungsjahr:
2024
Medientyp:
Text
Schlagworte:
  • Alkenes
  • Cobalt
  • Homogenous Catalysis
  • Hydrogenation
  • Ion Pairing
Beschreibung:
  • We show that countercations exert a remarkable influence on the ability of anionic cobaltate salts to catalyze challenging alkene hydrogenations. An evaluation of the catalytic properties of [Cat][Co(η4-cod)2] (Cat=K (1), Na (2), Li (3), (Depnacnac)Mg (4), and N(nBu)4 (5); cod=1,5-cyclooctadiene, Depnacnac={2,6-Et2C6H3NC(CH3)}2CH)]) demonstrated that the lithium salt 3 and magnesium salt 4 drastically outperform the other catalysts. Complex 4 was the most active catalyst, which readily promotes the hydrogenation of highly congested alkenes under mild conditions. A plausible catalytic mechanism is proposed based on density functional theory (DFT) investigations. Furthermore, combined molecular dynamics (MD) simulation and DFT studies were used to examine the turnover-limiting migratory insertion step. The results of these studies suggest an active co-catalytic role of the counterion in the hydrogenation reaction through the coordination to cobalt hydride intermediates.

Lizenz:
  • info:eu-repo/semantics/openAccess
Quellsystem:
Forschungsinformationssystem der UHH

Interne Metadaten
Quelldatensatz
oai:www.edit.fis.uni-hamburg.de:publications/ad856fc1-0ffa-40c8-81a5-111c6e5b39c2