The reflection of electrons at noncollinear magnetic surfaces is investigated by spin-polarized scanning tunneling microscopy and spectroscopy on unoccupied resonance states located in vacuo. Even for energies up to 20 eV above the Fermi level, the resonance states are found to be spin split, exhibiting the same local spin quantization axis as the underlying spin texture. Mapping the spin-dependent electron phase shift upon reflection at the surface on the atomic scale demonstrates the relevance of all magnetic ground state interactions for the scattering of spin-polarized low-energy electrons.