Damage tolerance and notch sensitivity of bio-inspired thin-ply Bouligand structures

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2021
Medientyp:
Text
Schlagworte:
  • CT analysis
  • Failure
  • Hybrid
  • Layered structures
  • Microstructures
  • Stress concentrations
  • 540: Chemie
  • 570: Biowissenschaften, Biologie
  • 600: Technik
  • 620: Ingenieurwissenschaften
  • 660: Technische Chemie
Beschreibung:
  • Different bio-inspired Bouligand thin-ply Carbon-Fibre-Reinforced Plastic (CFRP) laminates with a pitch angle as low as 2.07∘ are realised, which is the smallest pitch angle realised in literature. The angle is therefore close angles found in biological microstructures. Low-Velocity Impact (LVI) and residual compressive strength tests determined the damage tolerance of the structures. Investigated were two different interlaminar fracture toughnesses and two different metal-Bouligand-CFRP-layups. The low pitch angle results in significantly higher residual strengths than 45∘ quasi-isotropic (QI) layups, despite the significantly lower proportion of 0∘ fibres. Higher fracture toughness and hybridisation with steel layers lead to reduced matrix damage without increasing residual compressive strength. In-plane plane tension properties are determined with a pitch angle of 2.59∘. The results reveal, that the unnotched tensile strength is significantly lower. However, only helicoidal, sub-critical matrix cracking and no delaminations occur before final failure. The sub-critical matrix cracking leads to almost no notch sensitivity and a similar open-hole-tensile strength to 45∘-QI layups despite the low number of 0∘-fibres.
Beziehungen:
DOI 10.1016/j.jcomc.2021.100146
Lizenzen:
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/11588