Treatment with atorvastatin partially protects the rat heart from harmful catecholamine effects.

Link:
Autor/in:
Erscheinungsjahr:
2009
Medientyp:
Text
Beschreibung:
  • AIMS: Atorvastatin blunts the response of cardiomyocytes to catecholamines by reducing isoprenylation of G gamma subunits. We examined whether atorvastatin exerts similar effects in vivo and protects the rat heart from harmful effects of catecholamines. METHODS AND RESULTS: Rats were treated with atorvastatin (1 or 10 mg/kg x day) or H(2)O for 14 days per gavage. All three animal groups were subjected to restraint stress on day 10 and to infusions of isoprenaline (ISO; 1 mg/kg x day) or NaCl via minipumps for the last 4 days. Heart rate was measured by telemetry, left ventricular atrial natriuretic peptide (ANP) transcript levels by RT-PCR, and left atrial contractile function in organ baths. Heart rate was similar in all six study groups. In animals pre-treated with water, infusion of ISO induced an increase in heart-to-body weight ratio (HW/BW) by approximately 20%, an increase in ANP mRNA by approximately 350%, and a reduction in the inotropic effect of isoprenaline in left atrium by approximately 50%. In animals pre-treated with high-dose atorvastatin, the effects of ISO on HW/BW, ANP, and left atrial force were approximately 40, 50, and 40% smaller, respectively. Low dose atorvastatin had similar, albeit smaller effects. Atorvastatin treatment of NaCl-infused rats had only marginal effects. In cardiac homogenates from atorvastatin-treated rats (both NaCl- and ISO-infused), G gamma and G alpha(s) were partially translocated from the membrane to the cytosol. CONCLUSION: In the rat heart, treatment with atorvastatin results in translocation of cardiac membrane G gamma and G alpha(s) to the cytosol. This mechanism might contribute to protecting the heart from harm induced by chronic isoprenaline infusion without affecting heart rate.
  • AIMS: Atorvastatin blunts the response of cardiomyocytes to catecholamines by reducing isoprenylation of G gamma subunits. We examined whether atorvastatin exerts similar effects in vivo and protects the rat heart from harmful effects of catecholamines. METHODS AND RESULTS: Rats were treated with atorvastatin (1 or 10 mg/kg x day) or H(2)O for 14 days per gavage. All three animal groups were subjected to restraint stress on day 10 and to infusions of isoprenaline (ISO; 1 mg/kg x day) or NaCl via minipumps for the last 4 days. Heart rate was measured by telemetry, left ventricular atrial natriuretic peptide (ANP) transcript levels by RT-PCR, and left atrial contractile function in organ baths. Heart rate was similar in all six study groups. In animals pre-treated with water, infusion of ISO induced an increase in heart-to-body weight ratio (HW/BW) by approximately 20%, an increase in ANP mRNA by approximately 350%, and a reduction in the inotropic effect of isoprenaline in left atrium by approximately 50%. In animals pre-treated with high-dose atorvastatin, the effects of ISO on HW/BW, ANP, and left atrial force were approximately 40, 50, and 40% smaller, respectively. Low dose atorvastatin had similar, albeit smaller effects. Atorvastatin treatment of NaCl-infused rats had only marginal effects. In cardiac homogenates from atorvastatin-treated rats (both NaCl- and ISO-infused), G gamma and G alpha(s) were partially translocated from the membrane to the cytosol. CONCLUSION: In the rat heart, treatment with atorvastatin results in translocation of cardiac membrane G gamma and G alpha(s) to the cytosol. This mechanism might contribute to protecting the heart from harm induced by chronic isoprenaline infusion without affecting heart rate.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/a072c682-d377-4f56-a134-dedfca4aea11