Sequence Variation in the DDAH1 Gene Predisposes for Delayed Cerebral Ischemia in Subarachnoidal Hemorrhage

Link:
Autor/in:
Erscheinungsjahr:
2020
Medientyp:
Text
Beschreibung:
  • Delayed cerebral ischemia (DCI) often causes poor long-term neurological outcome after subarachnoidal hemorrhage (SAH). Asymmetric dimethylarginine (ADMA) inhibits nitric oxide synthase (NOS) and is associated with DCI after SAH. We studied single nucleotide polymorphisms (SNPs) in the NOS3, DDAH1, DDAH2, PRMT1, and AGXT2 genes that are part of the L-arginine-ADMA-NO pathway, and their association with DCI. We measured L-arginine, ADMA and symmetric dimethylarginine (SDMA) in plasma and cerebrospinal fluid (CSF) of 51 SAH patients at admission; follow-up was until 30 days post-discharge. The primary outcome was the incidence of DCI, defined as new infarctions on cranial computed tomography, which occurred in 18 of 51 patients. Clinical scores did not significantly differ in patients with or without DCI. However, DCI patients had higher plasma ADMA and SDMA levels and higher CSF SDMA levels at admission. DDAH1 SNPs were associated with plasma ADMA, whilst AGXT2 SNPs were associated with plasma SDMA. Carriers of the minor allele of DDAH1 rs233112 had a significantly increased relative risk of DCI (Relative Risk = 2.61 (1.25-5.43), p = 0.002). We conclude that the DDAH1 gene is associated with ADMA concentration and the incidence of DCI in SAH patients, suggesting a pathophysiological link between gene, biomarker, and clinical outcome in patients with SAH.

Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/b9d18d15-0d3e-46bd-9228-7b27e3d45114