Increased sensory feedback in Tourette syndrome.

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Beschreibung:
  • Tourette syndrome (TS) is a neuro-psychiatric disorder being characterized by motor and phonic tics typically preceded by sensory urges. Given the latter the role of the sensory system and sensorimotor interaction in TS has recently gained increased attention. 12 TS patients and 12 matched control subjects performed two tasks, requiring simple finger movements: a Go/NoGo task and a self paced movement task. Neurophysiological data was recorded using magnetoencephalography (MEG). Event related responses around movement onset, i.e. motor field (MF) occurring directly prior to the movement and movement evoked field (MEF) immediately after movement onset were analyzed using dipole modeling. MF peak amplitudes did not differ between groups in either task. In contrast, in both tasks MEF peak amplitudes were increased in TS patients. Moreover, larger MEF amplitudes during self paced movements were inversely correlated with motor tic frequency and severity. Enlarged MEF amplitudes as a marker of early sensory feedback of one's own movements probably represent enlarged sensory input from the periphery resulting from altered subcortical gating. We conclude that TS patients exhibit altered sensory-motor processing involved in voluntary movement control, which might also be successful in tic control.
  • Tourette syndrome (TS) is a neuro-psychiatric disorder being characterized by motor and phonic tics typically preceded by sensory urges. Given the latter the role of the sensory system and sensorimotor interaction in TS has recently gained increased attention. 12 TS patients and 12 matched control subjects performed two tasks, requiring simple finger movements: a Go/NoGo task and a self paced movement task. Neurophysiological data was recorded using magnetoencephalography (MEG). Event related responses around movement onset, i.e. motor field (MF) occurring directly prior to the movement and movement evoked field (MEF) immediately after movement onset were analyzed using dipole modeling. MF peak amplitudes did not differ between groups in either task. In contrast, in both tasks MEF peak amplitudes were increased in TS patients. Moreover, larger MEF amplitudes during self paced movements were inversely correlated with motor tic frequency and severity. Enlarged MEF amplitudes as a marker of early sensory feedback of one's own movements probably represent enlarged sensory input from the periphery resulting from altered subcortical gating. We conclude that TS patients exhibit altered sensory-motor processing involved in voluntary movement control, which might also be successful in tic control.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/6713fa9c-b8e2-4512-862f-c4f180942fe2