Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • Bioinspired materials
  • Characterization and analytical techniques
  • Design, synthesis and processing
  • Self-assembly
  • 620: Ingenieurwissenschaften
  • 620
Beschreibung:
  • Parallel and concentric alignment of microscopic building blocks into several orders of magnitude larger structures is commonly observed in nature. However, if similarly aligned structures are artificially produced their thickness is generally limited to just about one or two orders of magnitude more than the dimensions of the smallest element. We show that sedimentation provides a promising approach to manufacture solid materials consisting of well-aligned platelet-shaped particles while being more than 30 000 times thicker than the individual particle. Such sediments contain up to 28 vol% of particles without any further treatment and can be densified to 67 vol% particle fraction by subsequent unidirectional pressing. The degree of orientation of the platelet-shaped particles within the sediments was tracked by high-energy X-ray diffraction measurements. The Hermans orientation parameter, a statistical measure of the quality of alignment, was determined to be 0.63 ± 0.03 already for as-sedimented samples while the standard deviation of the orientation distribution of particles, another measure of average misalignment, was found to be (21.5 ± 1.4)°. After pressing, these values further improved to (0.81 ± 0.01) and (14.6 ± 0.4)°, respectively. Such quality of alignment competes with, if not even exceeds, values reported in the literature.
Beziehungen:
DOI 10.1038/srep09984
Lizenzen:
  • info:eu-repo/semantics/openAccess
  • http://rightsstatements.org/vocab/InC/1.0/
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/1402