A Plasmodium multi-domain protein possesses multiple inositol phosphate kinase activities.

Link:
Autor/in:
Erscheinungsjahr:
2012
Medientyp:
Text
Beschreibung:
  • The synchronization of intraerythrocytic maturation of Plasmodium parasites is an important factor in the malaria infection process. Synchronization is mediated by inositol phosphate (InsP(x))-induced Ca(2+)-release from internal stores. To further investigate the InsP(x) metabolism in these parasites a Plasmodium protein possessing inositol phosphate kinase (IPK) activity was recombinantly expressed, purified and enzymatically characterized for the first time. Its main activity is the conversion of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4), an important factor in chromatin remodeling and also in Ca(2+)-release. This protein possesses several additional IPK activities pointing to a potential role as inositol phosphate multikinase. Interestingly, we have also identified three putative subdomains of histone deacetylase in this protein possibly linking InsP(x)- and acetylation-mediated transcription regulation. Furthermore, we examined the inhibitory potential of >40 polyphenolic substances against its kinase activity. Because of the important role of InsP(x)-induced Ca(2+)-release in the development of Plasmodium parasites, IPKs are interesting targets for novel antimalarial approaches.
  • The synchronization of intraerythrocytic maturation of Plasmodium parasites is an important factor in the malaria infection process. Synchronization is mediated by inositol phosphate (InsP(x))-induced Ca(2+)-release from internal stores. To further investigate the InsP(x) metabolism in these parasites a Plasmodium protein possessing inositol phosphate kinase (IPK) activity was recombinantly expressed, purified and enzymatically characterized for the first time. Its main activity is the conversion of the Ca(2+)-releasing second messenger Ins(1,4,5)P(3) to Ins(1,3,4,5)P(4), an important factor in chromatin remodeling and also in Ca(2+)-release. This protein possesses several additional IPK activities pointing to a potential role as inositol phosphate multikinase. Interestingly, we have also identified three putative subdomains of histone deacetylase in this protein possibly linking InsP(x)- and acetylation-mediated transcription regulation. Furthermore, we examined the inhibitory potential of >40 polyphenolic substances against its kinase activity. Because of the important role of InsP(x)-induced Ca(2+)-release in the development of Plasmodium parasites, IPKs are interesting targets for novel antimalarial approaches.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/eafe82ed-5af7-4e21-9ca1-93b696b29dd6