Ligands for the peroxisome proliferator-activated receptor-gamma have inhibitory effects on growth of human neuroblastoma cells in vitro.

Link:
Autor/in:
Erscheinungsjahr:
2005
Medientyp:
Text
Beschreibung:
  • The thiazolidinedione (TZD) or glitazone class of peroxisome proliferator-activated-gamma (PPAR-gamma) ligands not only induce adipocyte differentiation and increase insulin sensitivity, but also exert growth inhibitory effects on several carcinoma cell lines in vitro as well as in vivo. In the current study the in vitro effect of four PPAR-gamma agonists (ciglitazone, pioglitazone, troglitazone, rosiglitazone) on the cell growth of seven human neuroblastoma cell lines (Kelly, LAN-1, LAN-5, LS, IMR-32, SK-N-SH, SH-SY5Y) was investigated. Growth rates were assessed by a colorimetric XTT-based assay kit. Expression of PPAR-gamma protein was examined by immunohistochemistry and Western blot analysis. All glitazones inhibited in vitro growth and viability of the human neuroblastoma cell lines in a dose-dependent manner showing considerable effects only at high concentrations (10 microM and 100 microM). Effectiveness of the glitazones on neuroblastoma cell growth differed depending on the cell line and the agent. The presence of PPAR-gamma protein was demonstrated in all cell lines. Our findings indicate that ligands for PPAR-gamma may be useful therapeutic agents for the treatment of neuroblastoma. Thus the effect of glitazones on the growth of neuroblastoma should now be investigated in an in vivo animal model.
  • The thiazolidinedione (TZD) or glitazone class of peroxisome proliferator-activated-gamma (PPAR-gamma) ligands not only induce adipocyte differentiation and increase insulin sensitivity, but also exert growth inhibitory effects on several carcinoma cell lines in vitro as well as in vivo. In the current study the in vitro effect of four PPAR-gamma agonists (ciglitazone, pioglitazone, troglitazone, rosiglitazone) on the cell growth of seven human neuroblastoma cell lines (Kelly, LAN-1, LAN-5, LS, IMR-32, SK-N-SH, SH-SY5Y) was investigated. Growth rates were assessed by a colorimetric XTT-based assay kit. Expression of PPAR-gamma protein was examined by immunohistochemistry and Western blot analysis. All glitazones inhibited in vitro growth and viability of the human neuroblastoma cell lines in a dose-dependent manner showing considerable effects only at high concentrations (10 microM and 100 microM). Effectiveness of the glitazones on neuroblastoma cell growth differed depending on the cell line and the agent. The presence of PPAR-gamma protein was demonstrated in all cell lines. Our findings indicate that ligands for PPAR-gamma may be useful therapeutic agents for the treatment of neuroblastoma. Thus the effect of glitazones on the growth of neuroblastoma should now be investigated in an in vivo animal model.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/82e86457-bd9d-4f9d-ad78-8f24daaccac5