Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal-Organic Framework Zn₂(dobpdc)

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2018
Medientyp:
Text
Beschreibung:
  • The diffusion of gases confined in nanoporous materials underpins membrane and adsorption-based gas separations, yet relatively few measurements of diffusion coefficients in the promising class of materials, metal-organic frameworks (MOFs), have been reported to date. Recently we reported self-diffusion coefficients for 13CO2 in the MOF Zn2(dobpdc) (dobpdc4- = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) which has one-dimensional channels with a diameter of approximately 2 nm [ Forse, A. C.; et al. J. Am. Chem. Soc. 2018, 140, 1663-1673 ]. By analyzing the evolution of the residual 13C chemical shift anisotropy line shape at different gradient strengths, we obtained self-diffusion coefficients both along (D∥) and between (D⊥) the one-dimensional MOF channels. The observation of nonzero D⊥ was unexpected based on the single crystal X-ray diffraction structure and flexible lattice molecular dynamics simulations, and we proposed that structural defects may be responsible for self-diffusion between the MOF channels. Here we revisit this analysis and show that homogeneous line broadening must be taken into account to obtain accurate values for D⊥. In the presence of homogeneous line broadening, intensity at a particular NMR frequency represents signal from crystals with a range of orientations relative to the applied magnetic field and magnetic gradient field. To quantify these effects, we perform spectral simulations that take into account homogeneous broadening and allow improved D⊥ values to be obtained. Our new analysis best supports nonzero D⊥ at all studied dosing pressures and shows that our previous analysis overestimated D⊥.
Beziehungen:
DOI 10.1021/acs.jpcc.8b02843
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/8637