256-MDCT for evaluation of urolithiasis: Iterative reconstruction allows for a significant reduction of the applied radiation dose while maintaining high subjective and objective image quality

Link:
Autor/in:
Erscheinungsjahr:
2014
Medientyp:
Text
Beschreibung:
  • PURPOSE: Multidetector CT (MDCT) is the established imaging modality in diagnostics of urolithiasis. The aim of iterative reconstruction (IR) is to allow for a radiation dose reduction while maintaining high image quality. This study evaluates its performance in MDCT for assessment of urolithiasis.

    MATERIALS AND METHODS: Fifty-two patients underwent non-contrast abdominal MDCT. Twenty-six patients were referred to MDCT under suspicion of urolithiasis, and examined using a dose-reduced scan protocol (RDCT). Twenty-six patients, who had undergone standard-dose MDCT, served as reference for radiation dose comparison. RDCT images were reconstructed using an IR system (iDose4™, Philips Healthcare, Cleveland, OH, USA). Objective image noise (OIN) was recorded and five radiologists rated the subjective image quality independently. Radiation parameters were derived from the scan protocols.

    RESULTS: The CTDIvol could be reduced by 50% to 5.8 mGy (P < 0.0001). The same reduction was achieved for DLP and effective dose to 253 ± 27 mGy*cm (P < 0.0001) and 3.9 ± 0.4 mSv (P < 0.0001). IR led to a reduction of the OIN of up to 61% compared with classic filtered back projection (FBP) (P < 0.0001). The OIN declined with increasing IR levels. RDCT with FBP showed the lowest scores of subjective image quality (2.32 ± 0.04). Mean scores improved with increasing IR levels. iDose6 was rated with the best mean score (3.66 ± 0.04).

    CONCLUSION: The evaluated IR-tool and protocol may be applied to achieve a considerable radiation dose reduction in MDCT for diagnostics of urolithiasis while maintaining a confident image quality. Best image quality, suitable for evaluation of the entire abdomen concerning differential diagnoses, was achieved with iDose6.

Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/63bf6535-2f49-4665-b815-cad7f041612b