Giant electrochemical actuation in a nanoporous silicon-polypyrrole hybrid material

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2020
Medientyp:
Text
Schlagworte:
  • Physics - Mesoscopic Systems and Quantum Hall Effect
  • Physics - Mesoscopic Systems and Quantum Hall Effect
  • Physics - Materials Science
  • Physics - Soft Condensed Matter
  • physics.app-ph
  • Physics - Chemical Physics
  • 530: Physik
  • 540: Chemie
Beschreibung:
  • The absence of piezoelectricity in silicon makes direct electro-mechanical applications of this mainstream semiconductor impossible. Integrated electrical control of the silicon mechanics, however, would open up new perspectives for on-chip actuorics. Here, we combine wafer-scale nanoporosity in single-crystalline silicon with polymerization of an artificial muscle material inside pore space to synthesize a composite that shows macroscopic electrostrain in aqueous electrolyte. The voltage-strain coupling is 3 orders of magnitude larger than the best-performing ceramics in terms of piezoelectric actuation. We trace this huge electroactuation to the concerted action of 100 billions of nanopores per square centimetre cross-section and to potential-dependent pressures of up to 150 atmospheres at the single-pore scale. The exceptionally small operation voltages (0.4-0.9 V) along with the sustainable and biocompatible base materials make this hybrid promising for bio-actuator applications.
Beziehungen:
DOI 10.1126/sciadv.aba1483
Lizenzen:
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by/4.0/
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/7648