Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects.

Link:
Autor/in:
Erscheinungsjahr:
2018
Medientyp:
Text
Schlagworte:
  • dk/atira/pure/publikationen_lom_relevant/publikation_ist_nicht_scoring_relevant
  • Hamburg Center of Neuroscience (HCNS)
  • dk/atira/pure/keywords/workgroup/00012
  • 12 Zentrum für Molekulare Neurobiologie
Beschreibung:
  • Accurate in vivo localisation of minimal amounts of functionalised gold-nanoparticles, enabling e.g. early-tumour diagnostics and pharmacokinetic tracking studies, requires a precision imaging system offering very high sensitivity, temporal and spatial resolution, large depth penetration, and arbitrarily long serial measurements. X-ray fluorescence imaging could offer such capabilities; however, its utilisation for human-sized scales is hampered by a high intrinsic background level. Here we measure and model this anisotropic background and present a spatial filtering scheme for background reduction enabling the localisation of nanoparticle-amounts as reported from small-animal tumour models. As a basic application study towards precision pharmacokinetics, we demonstrate specific localisation to sites of disease by adapting gold-nanoparticles with small targeting ligands in murine spinal cord injury models, at record sensitivity levels using sub-mm resolution. Both studies contribute to the future use of molecularly-targeted gold-nanoparticles as next-generation clinical diagnostic and pharmacokinetic tools.
  • Accurate in vivo localisation of minimal amounts of functionalised gold-nanoparticles, enabling e.g. early-tumour diagnostics and pharmacokinetic tracking studies, requires a precision imaging system offering very high sensitivity, temporal and spatial resolution, large depth penetration, and arbitrarily long serial measurements. X-ray fluorescence imaging could offer such capabilities; however, its utilisation for human-sized scales is hampered by a high intrinsic background level. Here we measure and model this anisotropic background and present a spatial filtering scheme for background reduction enabling the localisation of nanoparticle-amounts as reported from small-animal tumour models. As a basic application study towards precision pharmacokinetics, we demonstrate specific localisation to sites of disease by adapting gold-nanoparticles with small targeting ligands in murine spinal cord injury models, at record sensitivity levels using sub-mm resolution. Both studies contribute to the future use of molecularly-targeted gold-nanoparticles as next-generation clinical diagnostic and pharmacokinetic tools.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/ba5555a4-ff39-4204-a223-be30db79bfcb