Control over light emission in low-refractive-index artificial materials inspired by reciprocal design

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2022
Medientyp:
Text
Schlagworte:
  • additive technology
  • low-index artificial materials
  • low-index complete photonic bandgap
  • reciprocal space engineering
  • wave localization
  • 530: Physik
  • 600: Technik
Beschreibung:
  • Reciprocal space engineering allows tailoring the scattering response of media with a low refractive-index contrast. Here it is shown that a quasiperiodic leveled-wave structure with well-defined reciprocal space and random real space distribution can be engineered to open a complete photonic bandgap (CPBG) for any refractive-index contrast. For these structures, an analytical estimation is derived, which predicts that there is an optimal number of Bragg peaks for any refractive-index contrast. A finite 2D or 3D CPBG is expected at this optimal number even for an arbitrarily small refractive-index contrast. Results of numerical simulations of dipole emission in 2D and 3D structures support the estimations. In 3D simulations, an emission suppression of almost 10 dB is demonstrated with a refractive index down to 1.38. The 3D structures are realized by additive manufacturing on millimeter scale for a material with a refractive index of n ≈ 1.59. Measurements confirm a strong suppression of microwave transmission in the expected frequency range.
Beziehungen:
DOI 10.1002/adom.202100785
Lizenzen:
  • info:eu-repo/semantics/openAccess
  • https://creativecommons.org/licenses/by-nc/4.0/
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/11058