Molecular modeling of triton X micelles: force field parameters, self-assembly, and partition equilibria

Link:
Autor/in:
Verlag/Körperschaft:
Hamburg University of Technology
Erscheinungsjahr:
2015
Medientyp:
Text
Schlagworte:
  • 540: Chemie
  • 600: Technik
Beschreibung:
  • Nonionic surfactants of the Triton X-series find various applications in extraction processes and as solubilizing agents for the purification of membrane proteins. However, so far no optimized parameters are available to perform molecular simulations with a biomolecular force field. Therefore, we have determined the first optimized set of CHARMM parameters for the Triton X-series, enabling all-atom molecular dynamics (MD) simulations. In order to validate the new parameters, micellar sizes (aggregation numbers) of Triton X-114 and Triton X-100 have been investigated as a function of temperature and surfactant concentration. These results are comparable with experimental results. Furthermore, we have introduced a new algorithm to obtain micelle structures from self-assembly MD simulations for the COSMOmic method. This model allows efficient partition behavior predictions once a representative micelle structure is available. The predicted partition coefficients for the systems Triton X-114/water and Triton X-100/water are in excellent agreement with experimental results. Therefore, this method can be applied as a screening tool to find optimal solute-surfactant combinations or suitable surfactant systems for a specific application.
Beziehungen:
DOI 10.1021/acs.jctc.5b00026
Quellsystem:
TUHH Open Research

Interne Metadaten
Quelldatensatz
oai:tore.tuhh.de:11420/6531