Lesion Age Imaging in Acute Stroke: Water Uptake in CT Versus DWI-FLAIR Mismatch

Link:
Autor/in:
Erscheinungsjahr:
2020
Medientyp:
Text
Beschreibung:
  • PURPOSE: In acute ischemic stroke with unknown time of onset, magnetic resonance (MR)-based diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) estimates lesion age to guide intravenous thrombolysis. Computed tomography (CT)-based quantitative net water uptake (NWU) may be a potential alternative. The purpose of this study was to directly compare CT-based NWU to magnetic resonance imaging (MRI) at identifying patients with lesion age < 4.5 hours from symptom onset.

    METHODS: Fifty patients with acute anterior circulation stroke were analyzed with both imaging modalities at admission between 0.5 and 8.0 hours after known symptom onset. DWI-FLAIR lesion mismatch was rated and NWU was measured in admission CT. An established NWU threshold (11.5%) was used to classify patients within and beyond 4.5 hours. Multiparametric MRI signal was compared with NWU using logistic regression analyses. The empirical distribution of NWU was analyzed in a consecutive cohort of patients with wake-up stroke.

    RESULTS: The median time between CT and MRI was 35 minutes (interquartile range [IQR] = 24-50). The accuracy of DWI-FLAIR mismatch was 68.8% (95% confidence interval [CI] = 53.7-81.3%) with a sensitivity of 58% and specificity of 82%. The accuracy of NWU threshold was 86.0% (95% CI = 73.3-94.2%) with a sensitivity of 91% and specificity of 78%. The area under the curve (AUC) of multiparametric MRI signal to classify lesion age <4.5 hours was 0.86 (95% CI = 0.64-0.97), and the AUC of quantitative NWU was 0.91 (95% CI = 0.78-0.98). Among 87 patients with wake-up stroke, 46 patients (53%) showed low NWU (< 11.5%).

    CONCLUSION: The predictive power of CT-based lesion water imaging to identify patients within the time window of thrombolysis was comparable to multiparametric DWI-FLAIR MRI. A significant proportion of patients with wake-up stroke exhibit low NWU and may therefore be potentially suitable for thrombolysis. ANN NEUROL 2020;88:1144-1152.

Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/b923811f-c945-4d47-846a-674bce89ea93