Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer.

Link:
Autor/in:
Erscheinungsjahr:
2009
Medientyp:
Text
Beschreibung:
  • PURPOSE: Circulating cell-free DNA in the blood of cancer patients harbors tumor-specific aberrations. Here, we investigated whether this DNA might also reflect the presence of circulating tumor cells (CTC). EXPERIMENTAL DESIGN: To identify the source of cell-free DNA in blood, plasma derived from 81 patients with prostate cancer was examined for CTCs and cell-free DNA. An epithelial immunospot assay was applied for detection of CTCs, and a PCR-based fluorescence microsatellite analysis with a panel of 14 polymorphic markers was used for detection of allelic imbalances (AI). RESULTS: The plasma DNA levels significantly correlated with the diagnosis subgroups of localized (stage M0, n = 69) and metastasized prostate cancer (stage M1, n = 12; P = 0.03) and with the tumor stage of these patients (P <0.005). AI was found on cell-free DNA in plasma from 45.0% and 58.5% of M0 and M1 patients, respectively. Detection of CTCs showed that 71.0% or 92.0% of the M0 and M1 patients harbored 1 to 40 CTCs in their blood, respectively. The occurrence of CTCs correlated with tumor stage (P <0.03) and increasing Gleason scores (P = 0.04). Notably, significant associations of the number of CTCs with the AI frequencies at the markers D8S137 (P = 0.03), D9S171 (P = 0.04), and D17S855 (P = 0.02) encoding the cytoskeletal protein dematin, the inhibitor of the cyclin-dependent kinase CDKN2/p16 and BRCA1, respectively, were observed. CONCLUSIONS: These findings show, for the first time, a relationship between the occurrence of CTCs and circulating tumor-associated DNA in blood, which, therefore, might become a valuable new source for monitoring metastatic progression in cancer patients.
  • PURPOSE: Circulating cell-free DNA in the blood of cancer patients harbors tumor-specific aberrations. Here, we investigated whether this DNA might also reflect the presence of circulating tumor cells (CTC). EXPERIMENTAL DESIGN: To identify the source of cell-free DNA in blood, plasma derived from 81 patients with prostate cancer was examined for CTCs and cell-free DNA. An epithelial immunospot assay was applied for detection of CTCs, and a PCR-based fluorescence microsatellite analysis with a panel of 14 polymorphic markers was used for detection of allelic imbalances (AI). RESULTS: The plasma DNA levels significantly correlated with the diagnosis subgroups of localized (stage M0, n = 69) and metastasized prostate cancer (stage M1, n = 12; P = 0.03) and with the tumor stage of these patients (P <0.005). AI was found on cell-free DNA in plasma from 45.0% and 58.5% of M0 and M1 patients, respectively. Detection of CTCs showed that 71.0% or 92.0% of the M0 and M1 patients harbored 1 to 40 CTCs in their blood, respectively. The occurrence of CTCs correlated with tumor stage (P <0.03) and increasing Gleason scores (P = 0.04). Notably, significant associations of the number of CTCs with the AI frequencies at the markers D8S137 (P = 0.03), D9S171 (P = 0.04), and D17S855 (P = 0.02) encoding the cytoskeletal protein dematin, the inhibitor of the cyclin-dependent kinase CDKN2/p16 and BRCA1, respectively, were observed. CONCLUSIONS: These findings show, for the first time, a relationship between the occurrence of CTCs and circulating tumor-associated DNA in blood, which, therefore, might become a valuable new source for monitoring metastatic progression in cancer patients.
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/bf43a08c-7c5e-4372-b8a6-246883cf7bb0