Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces.

Link:
Autor/in:
Erscheinungsjahr:
2003
Medientyp:
Text
Beschreibung:
  • With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface conditioning methods: fine diamond bur, sandblasting, 5% hydrofluoric acid, and silica coating for bonding metal brackets to ceramic surfaces of feldspathic porcelain. Sandblasting and hydrofluoric acid were further tested after silane application. A total of 120 ceramic disc samples were produced, and 50 were used for surface roughness measurements. The glazed ceramic surfaces were used as controls. Metal brackets were bonded to the ceramic substrates with a self-curing composite. The samples were stored in 0.9% NaCl solution for 24 hours and then thermocycled (5000 times, 5 degrees C to 55 degrees C, 30 seconds). Shear bond tests were performed with a universal testing device, and the results were statistically analyzed. Chemical surface conditioning with either hydrofluoric acid (4.3 microm) or silicatization (4.4 microm) resulted in significantly lower surface roughness than mechanical conditioning (9.3 microm, diamond bur; 9.7 microm, sandblasting) (P
  • With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface conditioning methods: fine diamond bur, sandblasting, 5% hydrofluoric acid, and silica coating for bonding metal brackets to ceramic surfaces of feldspathic porcelain. Sandblasting and hydrofluoric acid were further tested after silane application. A total of 120 ceramic disc samples were produced, and 50 were used for surface roughness measurements. The glazed ceramic surfaces were used as controls. Metal brackets were bonded to the ceramic substrates with a self-curing composite. The samples were stored in 0.9% NaCl solution for 24 hours and then thermocycled (5000 times, 5 degrees C to 55 degrees C, 30 seconds). Shear bond tests were performed with a universal testing device, and the results were statistically analyzed. Chemical surface conditioning with either hydrofluoric acid (4.3 microm) or silicatization (4.4 microm) resulted in significantly lower surface roughness than mechanical conditioning (9.3 microm, diamond bur; 9.7 microm, sandblasting) (P
Lizenz:
  • info:eu-repo/semantics/restrictedAccess
Quellsystem:
Forschungsinformationssystem des UKE

Interne Metadaten
Quelldatensatz
oai:pure.atira.dk:publications/7015a35d-3ced-4d3b-ab02-efa7553d3f21